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Abstract

Here we give a natural extension of the duality principle for the curvature tensor of pointwise pseudo-Riemannian Osserman
manifolds. We proved that this extended duality principle holds under certain additional assumptions. Also, it is proved that duality
principle holds for every four-dimensional Osserman manifold.
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1. Introduction

Let (M, g) be an n-dimensional pseudo-Riemannian manifold of the signature (s, n − s). Let εX = g(X, X) be
the norm of the vector X ∈ Tp M . Depending on their norm, we distinguish the following types of tangent vectors:
spacelike (εX > 0), timelike (εX < 0), null (εX = 0, X 6= 0), definite (εX 6= 0) and unit (|εX | = 1). By Sp M, S+

p M,

and S−
p M we will denote all unit non-null, spacelike and timelike vectors in Tp M , respectively.

Let ∇ be the Levi-Civita connection and let R be the associated Riemannian curvature tensor; R(X, Y ) :=

[∇X , ∇Y ] − ∇[X,Y ]. The Jacobi operatorRX : Y −→ R(Y, X)X is a symmetric endomorphism of the tangent bundle
T M . For non-null X ,RX preserves the orthogonal space {X}

⊥, and we will use the notationR′

X for the restriction of
RX to this space.

One says that (M, g) is timelike (respectively, spacelike) pointwise Osserman if the characteristic polynomial of
RX is independent of X ∈ S−

p M (respectively, S+
p M). The notions pointwise timelike Osserman and pointwise

spacelike Osserman are equivalent and, if (M, g) is either of them, then (M, g) is said to be Osserman. Manifolds
such that the characteristic polynomial of RX is constant on the bundle S−M (respectively, S+M) of unit timelike
(respectively, spacelike) vectors are called globally timelike (respectively, spacelike) Osserman. In the higher signature
setting, unlike in the Riemannian setting, the eigenvalue structure does not determine the conjugacy class of
a symmetric operator but its Jordan normal form. We say that (M, g) is timelike pointwise Jordan Osserman
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(respectively, spacelike pointwise Jordan Osserman) if the Jordan normal form of RX is independent of X ∈ S+
p M

(respectively, on S−
p M). Similarly, we define globally timelike Jordan Osserman manifolds. While the notions of

globally timelike Osserman or globally spacelike Osserman are the same, the notions globally timelike Jordan
Osserman and globally spacelike Jordan Osserman are distinct. For more details about this topic, see [9,10].

In Riemannian settings, in a series of papers by Chi and by Nikolayevsky it was shown that globally Osserman
manifolds of dimension n 6= 16 are two-point homogeneous spaces; and consequently for n 6= 16, this gives an
affirmative answer to Osserman conjecture (see [17,18,7,13–15]). For a generalization of Osserman conjecture to the
pseudo-Riemannian case, see [4].

Let R be an algebraic curvature operator. This is a tensor satisfying the curvature symmetries

R(X, Y ) + R(Y, X) = 0, (1)
R(X, Y )Z + R(Y, Z)X + R(Z , X)Y = 0, (2)
g(R(X, Y )Z , W ) = g(R(Z , W )X, Y ). (3)

One says R is an Osserman algebraic curvature tensor if the associated Jacobi operator has the characteristic
polynomial constant on the unit pseudo-spheres S−

p M and S+
p M . Similarly, R is a timelike (spacelike) Jordan

Osserman algebraic curvature tensor if the associated Jacobi operator has the Jordan normal form constant on the
unit pseudo-sphere S−

p M (S+
p M). One of the most natural approaches to studying the Osserman-type problems was

suggested in [12]. It has two steps:

(1) classifying the Osserman (Jordan Osserman) algebraic curvature tensors;
(2) finding those Osserman (Jordan Osserman) algebraic curvature tensors which can be realized as the curvature

tensors of a pseudo-Riemannian manifold.

In the Riemannian settings, the duality principle is the following property of an Osserman algebraic curvature tensor
R:

λ ∈ R satisfies the duality principle if, for any unit vectors X and Y , there holds

RX Y = λY if and only if RY X = λX.

We say that R satisfies the duality principle if and only if every eigenvalue of Jacobi operatorRX , X ∈ Sn−1, satisfies
the duality principle.

The duality principle, which is proved by the second author (see [20]) and re-proved by Gilkey (see [10]), is used
as one of the important tools in the proof of Osserman conjecture for n 6= 8, 16 by Nikolayevsky (see [14]).

The main result of this paper is a natural extension of the notion of the duality principle on pseudo-Riemannian
manifolds.

It is worth noting that the Osserman manifolds are described in Riemannian settings (except some cases for n = 16)
and in Lorentzian settings (spaces of constant sectional curvature; see [2]), but in the case of higher signature (except
the case of four-dimensional Kleinian manifolds; see [3,9]) we are very far from the complete picture. For example,
the Osserman conjecture does not hold; see [19,6,3,9]. The interesting questions which arise from our investigations
are: classification of all algebraic curvature tensors which satisfy the duality principle and classification of all pseudo-
Riemannian manifolds whose curvature tensor satisfies the duality principle.

Our paper is organized as follows. Section 1 is devoted to the introduction in this topic, motivation, as well as some
interesting questions which arise from our investigations. Since k-stein manifolds are closely related to the Osserman
manifolds, in Section 2 we give some basic characterizations of k-stein conditions and especially of 1-stein and 2-
stein manifolds. It is known that spacelike and timelike Jordan Osserman algebraic curvature tensors are necessarily
diagonalizable in signature (p, q), p 6= q (see [11]), and therefore the duality principle becomes of great interest
when the Jacobi operator RX is diagonalizable for any X ∈ Sp M . We call such manifolds diagonalizable pseudo-
Riemannian Osserman manifolds. Following the proof of the duality principle in the Riemannian case (see [20]),
we obtain the analogous conditions (Theorem 2.2) for diagonalizable pseudo-Riemannian Osserman manifolds. In
Section 3 we give the definition of the duality principle, and extend it for all non-null vectors (Theorem 3.2). A
characterization of the duality principle for diagonalizable pseudo-Riemannian manifolds is given in Theorem 3.3.
As consequences of this, we obtain that the duality principle holds in diagonalizable pseudo-Riemannian manifolds:
(i1) with all distinct eigenvalues of the Jacobi operator (Corollary 3.4) and (i2) when for any X ∈ Sp M the Jacobi
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operator RX has not null eigenvectors (Corollary 3.5). In Section 4 we prove that the duality principle holds for any
four-dimensional Osserman manifold.

2. Preliminaries

2.1. k-stein

We say that a manifold M is k-stein if there exist constants Ct for 1 ≤ t ≤ k such that, for all X ∈ SM ,
Tr(Rt

X ) = (εX )t Ct holds. It is well known that 1-stein manifolds are Einstein, and vice versa, and also that the
Osserman timelike (spacelike) condition is equivalent to the k-stein condition (see, for example, [10, 1.7.3 Lemma]).

Let (E1, E2, . . . , En) be an arbitrary pseudo-orthonormal basis of Tp M . Let X = αEi + βE j , where i and j are
fixed and 1 ≤ i 6= j ≤ n. Then we have

RX = α2Ri + αβRi j + β2R j (4)

where we put

Ri = REi and Ri j = R(·, Ei )E j + R(·, E j )Ei .

Now, after the substitution α2
= εX εi − β2εi ε j in (4), we obtain

RX = εXεiRi + αβRi j + β2(R j − εiε jRi ). (5)

Let us introduce the following notations:

Ai
pq := [Ri ]pq = εp Rqiip, B j

pq := [R j ]pq = εp Rq j jp, Z i j
pq := [Ri j ]pq = εp(Rqi jp + Rq jip). (6)

Since

[Rk
X ]pq =

∑
p2,p3,...,pk

[RX ]pp2 [RX ]p2 p3 · · · [RX ]pkq ,

Tr(Rk
X ) =

∑
p1,p2,...,pk

[RX ]p1 p2 [RX ]p2 p3 · · · [RX ]pk p1 ,

Eq. (5) puts the k-stein condition in the following form:

εk
X Ck =

∑
p1,...,pk ,pk+1=p1

∏
1≤t≤k

(
εXεi Ai

pt pt+1
+ αβZ i j

pt pt+1 + β2(B j
pt pt+1 − εiε j Ai

pt pt+1
)
)

. (7)

Lemma 2.1. (i1) A manifold M is 1-stein iff, for all 1 ≤ i 6= j ≤ n, the following formulas hold∑
1≤p≤n

Z i j
pp = 0 and

∑
1≤p≤n

(B j
pp − εiε j Ai

pp) = 0. (8)

(i2) If a manifold is 2-stein then, for all 1 ≤ i 6= j ≤ n, the following formulas hold:∑
1≤p,q≤n

Ai
pq Z i j

qp =

∑
1≤p,q≤n

B j
pq Z i j

qp = 0, (9)

2
∑

1≤p,q≤n

Ai
pq B j

qp − 2εiε j
∑

1≤p,q≤n

Ai
pq Ai

qp +

∑
1≤p,q≤n

Z i j
pq Z i j

qp = 0, (10)

∑
1≤p,q≤n

Ai
pq Ai

qp =

∑
1≤p,q≤n

B j
pq B j

qp. (11)

Proof. The proof for both statements follows from (7) by specialization with k = 1 and k = 2, respectively. In the
first case we just consider the terms with α β and β2; in the second case we manipulate using the formulas with the
terms α β, β2, α β3, and β4. �
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2.2. Diagonalizable manifolds

Let us consider the case when the Jacobi operator RX is diagonalizable for any X ∈ Sp M . We will call such
manifolds diagonalizable Osserman (pseudo-Riemannian) manifolds. Since spacelike and timelike Jordan Osserman
algebraic curvature tensors are necessarily diagonalizable in signature (p, q), p 6= q, the duality principle becomes
especially interesting in the diagonalizable setting.

It is clear that all information about R are encoded in the terms with αiβ i+2t (i = 0, 1 and t ∈ N) of Tr(Rk
X )

(see (7)); one can consider terms with αβ and β2. We obtain the following very important theorem, which is a
generalization of the main theorem of [20].

Theorem 2.2. Let (M, g) be a diagonalizable pseudo-Riemannian Osserman manifold, and let (E1, E2, . . . , En) be
an orthonormal basis of Tp M such that R1 has a diagonal matrix with respect to this basis, and let Λa = {p |

[R1]pp = a}. Then, for every eigenvalue a of R1, and for all 1 ≤ i 6= j ≤ n, there hold

(i1)
∑
p∈Λa

Z i j
pp = 0, (12)

(i2)
∑

p,q∈Λa

Z i j
pq Z i j

qp = 0. (13)

Proof. Since the proof of the main theorem of [20] does not depend on a particular form of elements Z i j
pq , we conclude

that this proof also works in the pseudo-Riemannian case. �

Remark 1. Let us remark that the above theorem is a reformulation of the main theorem (Theorem 1.1) of [20], or
more precisely that the duality principle in the Riemannian case follows from (12) and (13).

3. Duality

Definition 3.1. Let R be an Osserman algebraic curvature tensor. For λ ∈ R we say that it satisfies the duality principle
if, for all mutually orthogonal unit vectors X, Y , there holds

RX (Y ) = εXλY H⇒ RY (X) = εY λX. (14)

If the duality principle holds for all λ ∈ R, then we say that the duality principle holds for the algebraic curvature
tensor R (or for the pseudo-Riemannian Osserman manifold (M, g) whose curvature tensor is R).

Remark 2. It is obvious that the above definition is a natural generalization of the duality principle for Riemannian
settings; see [20].

In the next theorem we will show that one can extend the domain for X and Y in the case of diagonalizable
Osserman manifolds.

Theorem 3.2. Let (M, g) be a diagonalizable Osserman manifold such that the duality principle holds for λ ∈ R.
Then implication (14) holds for all X, Y ∈ Tp M with εX 6= 0.

Proof. The proof has three steps. Each of them is an extension of the implication (14) to all

(i1) X, Y ∈ Tp(M) with εX , εY 6= 0 and g(X, Y ) = 0;
(i2) X, Y ∈ Tp(M) with εX 6= 0 and g(X, Y ) = 0;
(i3) X, Y ∈ Tp(M) with εX 6= 0.

For (i1) it is enough to rescale any two non-null orthogonal vectors X and Y which satisfy (14).
(i2) Let Y be a null eigenvector (εY = 0) of RX for the eigenvalue εXλ orthogonal to X . Since RX is

diagonalizable, by the general theory of symmetric endomorphisms in pseudo-unitarian spaces (see, for example, [16,
Section 28.1]), there exists a mixed, orthogonal to X , eigenplane for the eigenvalue εXλ which contains Y . This implies
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that there are non-null mutually orthogonal vectors E, F ∈ {X}
⊥ such that RX (E) = εXλE,RX (F) = εXλF and

Y = E + F . Now we have

RE+θ F (X) = RE (X) + θ2RF (X) + θ (R(X, E)F + R(X, F)E) . (15)

Since for θ2
6= 1 we have that E + θ F , E and F are three non-null eigenvectors of RX which correspond

to the eigenvalue εXλ, then for them the duality principle hold, which implies that RE+θ F (X) = εE+θ FλX ,
RE (X) = εEλX andRF (X) = εFλX . From (15) we have

εE+θ FλX = εEλX + θ2εFλX + θ (R(X, E)F + R(X, F)E)

and, since εE+θ F = εE + θ2εF , the equation above gives

θ(R(X, E)F + R(X, F)E) = 0.

Consequently, for all θ , Eq. (15) becomes

RE+θ F (X) = RE (X) + θ2RF (X),

and especially for θ = 1 we have

RE+F (X) = RE (X) +RF (X).

SinceRE (X) +RF (X) = εEλX + εFλX = εE+FλX and Y = E + F , we have finally

RY (X) = 0 = εY λX,

and this completes the proof of (i2).
(i3) Let us assume that RX (Y ) = εXλY for εX 6= 0 and g(X, Y ) 6= 0. Then there exist Z ∈ {X}

⊥ and α 6= 0 such
that Y = αX + Z . Since Y is eigenvector ofRX , we have,

RX (Z) = RX (αX + Z) = εXλ(αX + Z),

and because of Im(RX ) ⊆ {X}
⊥ we have

0 = g(RX (Z), X) = g(εXλ(αX + Z), X) = g(εXλαX, X) = ε2
Xαλ.

Now α, εX 6= 0 implies λ = 0, which means that RX (Z) = 0 for Z ⊥ X and εX 6= 0, but then duality (i2) implies
thatRZ (X) = 0. Now, we have

RY (X) = RαX+Z (X) = R(X, αX + Z)(αX + Z) = R(X, Z)(αX + Z)

= −αR(Z , X)X + R(X, Z)Z = −αRX (Z) +RZ (X) = 0,

which completes the proof of the theorem. �

Let (M, g) be a diagonalizable pseudo-Riemannian Osserman manifold and let (E1, E2, . . . , En) be a pseudo-
orthonormal basis of Tp M such that the Jacobi operatorR1 has a diagonal matrix with respect to this basis. Then the
duality applied to the coordinate eigenvectors gives

R1(E j ) = ε1λE j H⇒ R j (E1) = ε jλE1. (16)

R1(E j ) = ε1λE j is equivalent to µ j = A1
j j = ε1λ and A1

k j = 0 for k 6= j . From (6) it follows that λ = ε1ε j R j11 j

and R j11k = 0 for k 6= j . On the other hand, we have that R j (E1) = ε jλE1 is equivalent to B j
11 = ε jλ and B j

k1 = 0
for k 6= 1, then (6) gives λ = ε jε1 R1 j j1 and R1 j jk = 0 for k 6= 1. Since ε1ε j R j11 j = ε jε1 R1 j j1 hold, we see that(

R j11k = 0 for k 6= j
)

H⇒
(
R1 j jk = 0 for k 6= 1

)
, (17)

is the sufficient condition for (16). Now, we can formulate the following theorem.

Theorem 3.3. Let (M, g) be a diagonalizable pseudo-Riemannian Osserman manifold, and let (E1, E2, . . . , En) be
an orthonormal basis of Tp M such that R1 has a diagonal matrix with respect to this basis. The duality principle
holds for (M, g) iff Z1 j

pp = 0 holds for all j > 1 and all 1 ≤ p ≤ n.



V. Andrejić, Z. Rakić / Journal of Geometry and Physics 57 (2007) 2158–2166 2163

Proof. Let us consider the condition Z1 j
pp = 0. By (6), this means that

0 = Z1 j
pp = εp(Rp1 j p + Rpj1p) = 2εp R1ppj ,

and therefore,

Z1 j
pp = 0 ⇐⇒ R1ppj = 0. (18)

Let us assume that the duality principle holds for (M, g). Since all E j are eigenvectors of R1, the duality principle
implies that R1ppj = 0 for all j, p 6= 1. Because of (18), this means that Z1 j

pp = 0, for all p and j 6= 1.

Conversely, let us assume that Z1 j
pp = 0 for all p and j 6= 1, i.e., R1ppj = 0. We should show implication (14)

for all mutually orthogonal X and Y ∈ Sp M . We can suppose that X = E1 and Y = E2, and Y is an eigenvector of
RX = R1, and then, because of the diagonalizability of R1, we can find an orthonormal frame (E1, E2, . . . , En) of
Tp M in whichR1 is represented by a diagonal matrix. Then (14) is reduced to (16) for j = 2. �

Now, we can combine the previous theorem and Theorem 2.2 to obtain some properties of diagonalizable pseudo-
Riemannian manifolds.

Corollary 3.4. If (M, g) be a diagonalizable pseudo-Riemannian Osserman manifold with all different eigenvalues,
then the duality principle holds in M.

Proof. Since M is a diagonalizable manifold and since it has all different eigenvalues, then for any eigenvalue a the
set Λa has just one element. Formula (12) give us Z1 j

pp = 0 for all p, and Theorem 3.3 implies the statement. �

Let us now consider formula (13) from Theorem 2.2, i.e.,∑
p,q∈Λa

Z1 j
pq Z1 j

qp = 0.

Because Z1 j
qp = εq(Rp1 jq + Rpj1q) = εqεpεp(Rq j1p + Rq1 j p) = εpεq Z1 j

pq , the previous formula takes the form∑
p,q∈Λa

εpεq(Z1 j
pq)2

= 0, (19)

and we can formulate the following corollary.

Corollary 3.5. Let (M, g) be a diagonalizable pseudo-Riemannian Osserman manifold such that, for every X ∈

Sp M , a null eigenvector of RX does not exist, then the duality principle holds in M. In particular, if M is a
Riemannian manifold, then the duality principle holds.

Proof. Let us choose a basis (X = E1, E2, . . . , En) of Tp M in which RX has a diagonal matrix. The non-existence
of a null eigenvector of RX means that all eigenspaces of RX contain only spacelike or only timelike vectors. Λa
generates an eigenspace of RX for the eigenvalue a, and we have εp = εq for all p, q ∈ Λa . Then formula (19)
becomes∑

p,q∈Λa

(Z1 j
pq)2

= 0.

From the formula above, it follows that Z1 j
pq = 0 for all p, q ∈ Λa , which holds for all eigenvalues a of RX . In

particular, Z1 j
pp = 0 for all p ∈ Λa , and the application of Theorem 3.3 ends this proof. �

Remark 3. Similar considerations for non-diagonalizable pseudo-Riemannian Osserman manifolds essentially imply
(by the general theory of symmetric endomorphisms in pseudo-unitarian spaces) the study of the duality principle
for null vectors. Such manifolds can occur only in neutral signatures (p, p), and its Jordan normal form could be
arbitrarily complicated; for more details, see [10].
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4. Four-dimensional manifolds

It is well known that an algebraic curvature tensor in dimension four is Osserman if and only if it is Jordan
Osserman, but there exist 4-manifolds which are globally Osserman but not globally Jordan Osserman; see Remark 4
and, for more details, [9]. Also, n = 4 is the smallest dimension in which there exist timelike (spacelike)
Jordan Osserman manifolds with non-diagonalizable Jacobi operator. Algebraic curvature tensors of Osserman (2, 2)

manifolds are described in the paper [3]. The geometry of such manifolds is very rich and is studied by many authors;
see [9,10,4,1,5,8], etc.

It is known that there are four types of Osserman (2, 2) algebraic curvature tensors. Depending on the roots of the
minimal polynomial of its restricted Jacobi operator, they are: (Ia) — diagonalizable case; (Ib) — complex case; (II)
— case with a double root; and (III) — case with a triple root. In this section we will use notation introduced in [1,3,
4]. So, we have the following,

Theorem 4.1. The duality principle holds for every four-dimensional Osserman manifold.

Proof. If (M, g) is a four-dimensional Osserman manifold, then in the signatures (0, 4) or (1, 3) (the Riemannian
(see [20]) and Lorentzian (see [2]) cases) duality holds. So, let us suppose that (M, g) is an Osserman manifold of the
signature (2, 2) and we use the classification of algebraic curvature tensors given in [3]. Let us mention here that in
case (III) the restricted Jacobi operator does not have any non-null eigenvector (this follows from the general theory
of symmetric endomorphisms in pseudo-unitarian spaces (see, [3], Theorem 3.1)) and in this case we have nothing to
prove.

(Ia) M is diagonalizable. Here, we distinguish cases depending on the number of different eigenvalues of the
restricted Jacobi operator. If all three eigenvalues are different (then by Corollary 3.4) or if all three eigenvalues are
equal (then M is a space form), duality holds. Because of this, let us suppose that the restricted Jacobi operator R′

X
has exactly two different eigenvalues εXλ and εXµ, such that εXλ is of multiplicity two. Then µ is an eigenvalue
of multiplicity 1, and duality holds (an obvious consequence of Theorem 3.3). So, it remains to prove duality for
the eigenvalue λ. Since M is diagonalizable, then for any unit vector X ∈ Tp M we have the following orthogonal
decomposition:

Tp M = 〈X〉 ⊕ Ker(R′

X − εXλId) ⊕ Ker(R′

X − εXµId).

Let us suppose that RX (Y ) = εXλY , and consider a unit vector Y ∈ Ker(R′

X − εXλ Id). Because of the orthogonal
decomposition

Tp M = 〈Y 〉 ⊕ Ker(R′

Y − εY λ Id) ⊕ Ker(R′

Y − εY µ Id),

and g(X, Y ) = 0, we have X = αL + βM , where

L ∈ Ker(R′

Y − εY λ Id), M ∈ Ker(R′

Y − εY µ Id), g(L , M) = 0.

Now, we have

RY X = RY (αL + βM) = αRY (L) + βRY (M) = αεY λL + βεY µM

g(RY X, X) = g(αεY λL + βεY µM, αL + βM) = α2εY εLλ + β2εY εMµ

and since

g(RY X, X) = R(X, Y, Y, X) = g(RX Y, Y ) = g(εXλY, Y ) = εXεY λ

it holds that

εXεY λ = α2εY εLλ + β2εY εMµ.

After substitution of εX = α2εL + β2εM in the previous equation, one obtains β2εMεY λ = β2εMεY µ. Space
Ker(R′

V − εV µId) has dimension 1 and since there are no null vectors we have εM 6= 0, then λ 6= µ and εY 6= 0
imply that β = 0. This means that X ∈ Ker(R′

Y − εY λId) and the proof in the diagonalizable case is over.
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Cases (Ib) and (II). In this case we have the existence of a pseudo-orthonormal basis (see [3]) (E1, E2, E3, E4)

such that ε1 = ε2 = −1, ε3 = ε4 = 1 and the Jacobi operatorR1 := RE1 with respect to this basis has the following
matrix:

R1 =


0 0 0 0
0 −a γ 0
0 −γ −b 0
0 0 0 −c

 . (20)

The use of 1-stein and 2-stein conditions gives (see [3] for more details) all non-vanishing generic components of the
curvature tensor

R1221 = R3443 = a, R1331 = R2442 = −b, R1441 = R2332 = −c,

−R2113 = −R2443 = R1224 = R1334 = γ,

R1234 = x =
−2a + b + c

3
, R1423 = y =

a + b − 2c
3

, R1342 = −x − y.

(21)

In the case (Ib) we have a = b, and only a non-trivial (different from E1) eigenvector of R1 is E4. Then we have
R1(E4) = −c E4, and since R1442 = R1443 = R1444 = 0 we conclude that R4(E1) is orthogonal to the subspace
〈E2, E3, E4〉 and, consequently,R4(E1) = cE1, i.e., duality holds.

Case (II). In this case we have a = t − γ , b = t + γ , for some t . Then the eigenvectors ofR1 are E2 − E3 and E4.
If a two-dimensional block and a one-dimensional Jordan block of R1 have different eigenvalues (t 6= c) then

duality holds, since the eigenvector E2 − E3 is null (we have nothing to prove) and for the spacelike eigenvector E4
we obtain (as in the case (Ib))R4(E1) = cE1.

If a two-dimensional block and a one-dimensional Jordan block of R1 have the same eigenvalue −c (t = c), then
from (21) it follows that y = R1432 = 0. Now, the eigenvectors ofR1 have the following form: Z = αE2−αE3+βE4.
Then we have

R1(Z) = R1(αE2 − αE3 + βE4) = α(−aE2 − γ E3 − γ E2 + bE3) − βcE4

= −c(αE2 − αE3 + βE4) = −cZ = εE1 cZ .

Let us findRZ (E1), or equivalently g(RZ (E1), E j ), for j = 2, 3, 4:

T j = g(RZ (E1), E j )

= R(E1, αE2 − αE3 + βE4, αE2 − αE3 + βE4, E j ). (22)

Using (21) one can easily find T j = 0 for j = 2, 3, 4, and consequently RZ (E1) is orthogonal to the subspace
〈E2, E3, E4〉 and hence

RZ (E1) = cβ2 Z = εZ cE1.

If the vector Z is a unit spacelike vector, then β2
= 1 and duality in this case also holds. �

Remark 4. Duality and null vectors. Let us consider the following Walker metric on R4 which is given in [9],
p. 64–66:

g =


x3 f1 a 1 0

a x4 f2 0 1
1 0 0 0
0 1 0 0

 (23)

where f1 = f1(x1, x2) and f2 = f2(x1, x2) are smooth real functions and where a is constant. For ∂ f1
∂x2

+
∂ f2
∂x1

= 0,
those metrics define a family of (2, 2) Osserman manifolds.1 Since pointwise Osserman manifolds are null pointwise

1 In this family there exist a lot of interesting examples although all manifolds have the same characteristic polynomial λ4. For example, there
exist examples which are locally non-symmetric spaces, which are pointwise Osserman and which are not globally Osserman, etc.
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Osserman manifolds (see [10]), the manifolds from the considered class are also null Osserman. Moreover, they satisfy
the duality principle for non-null vectors by Theorem 4.1, but they do not satisfy the duality principle for null vectors.
For example, the vector E3 is null and its Jacobi operatorRE3 vanishes, butRE1(E3) = −

1
2

∂ f1
∂x2

E4 (see, p. 66 of [9]);

this means that the duality principle is not satisfied for null vector E3 if ∂ f1
∂x2

6= 0.
The above example shows that the extension of the duality principle to the null vectors needs additional analysis.

The forthcoming paper will deal with a natural extension of the duality principle to null vectors.
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[4] N. Blažić, N. Bokan, Z. Rakić, A note on Osserman conjecture and isotropic covariant derivative of curvature, Proc. Amer. Math. Soc. 128

(2000) 245–253.
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